U.S. NAVAL RESEARCH LABORATORY

A Sensor for On-orbit Optical Detection of Lethal Non-Trackable Debris; Ground Testing Summary

Andrew C. Nicholas, Joshua M. Wolf, Lee J. Kordella, Charles M. Brown, Ted T. Finne, Scott A. Budzien,Kenneth D. Marr, Ivan J. Galysh, Christoph R. Englert

US Naval Research Laboratory, Washington DC

11 October 2022

The authors wish to acknowledge NASA's Heliophysics Division for funding this research

NATO SET-SCI-297-11 Space Sensors & Space Situational Awareness

Affiliation: United States Naval Research Laboratory

BS in Engineering Physics from Embry-Riddle Aeronautical University, Daytona Beach campus, in 1991.

MS in Space Physics from the University of Alaska, Fairbanks in 1993.

He has been working at the Naval Research Laboratory in Washington, DC for 29 years. He is a civil servant heading the Sensor Development and Applications Section of the Geospace Science and Technology Branch in the Space Sciences Division.

His research includes the development of space-flight hardware to study orbital debris, the upper atmosphere, thermosphere/ionosphere, atmospheric data analysis and modeling.

Motivation

Hypervelocity Impact Testing Resulting damage to an 18 cm thick block of Aluminum after being impacted by a 1.2 cm Aluminum sphere travelling at 6.8 km/s. *Credit: ESA*

Objects in the size range from fractions of a mm to a few cm have enough kinetic energy to causes serious or catastrophic damage to spacecraft but are too small to be effectively seen from the ground.

LARADO is an on-orbit asset designed to observe this lethal debris population

U.S. Naval Research Laboratory

Background

Space debris is a widely recognized, growing problem for all orbiting assets

Current/planned future detection techniques for objects in orbit:

- Ground based radar & optical
- Space based optical
 - All are sensitive to objects >5cm (statistical data down to mm scale)
- There are about 750,000 flying bullets about one centimeter in size, such as the one that hit Sentinel 1A, and approximately 150 million objects at around one millimeter

Holger Krag, head of the European Space Agency's Space Debris Office at the Seventh European Conference on Space Debris (April 18-21, 2017)

U.S. Naval Research Laboratory

Laser-sheet Anomaly Resolution and Debris Observation (LARADO)

<u>Objectives:</u> Demonstrate an innovative concept to perform real time, on-orbit, debris detection (10 cm to 1mm with <mm stretch goal), auto-detection.

Description:

- A light sheet is formed using a collimated light source (e.g. a laser) and a conic mirror, Powell lens or diffuser.
- A camera is used to detect scattered light from objects penetrating the laser sheet.
- System is scalable, more laser power provides increased coverage and better sensitivity
- Desired area x time coverage: 3m²*year
 Reduce errors in models by 50%

U.S. Naval Research Laboratory

USNAVAI

ABORATORY

Optical Setup Lightsheet

U.S. Naval Research Laboratory

Optical Setup Cameras/Filter

Ximea XiD CCD camera model MD061MU-SY

- Traditional Monochrome 6Mp CCD
- 2752 by 2202 4.5µm Px resolution
- Sony ICX814AL sensor (~35% QE at 793nm) **Frans**
- 12.5 x 10.0mm chip size
- USB 3 interface
- 8, 10, 12 or 14 bit image depth

SemRock 794 nm filter

1.20 1.00

0.80

0.60

0.40

0.20

0.00

650

Prophesee camera Gen 4.1 HD neuromorphic

- Sony IMX636ES chip
- 1280 by 720 4.86um Px res
- **Optical format: 1/2.5**"
- Latency at 10kLux: 310 µs ۲
- Dynamic Range > 120dB
- Min contrast sensitivity 15 %
- **USB 3 interface**

How a neuromorphic (event-based) camera works

Only reports pixels that change above (below) a threshold brightness. Each pixel is read out independently and asynchronously. Pink (increases) and blue (decreases) dots represent the continuous motion of a cheetah super imposed between frames from a traditional camera.

Distribution Statement A: Approved for public release. Distribution is unlimited.

800

850

Width

32nm

750

Wavelength nm

700

SET-SCI-297-11 | 7

AMES Vertical Gun Range (AVGR)

NASA's premiere hypervelocity impact facility for Planetary Geology and Geophysics research.

Capabilities:

- 2.5m diameter x 2.75 m chamber
- Impactors can range in size from 1/16" to 1/4" (1.59 - 6.35 mm)
- Launch speeds from 0.5 to 7 km/s
- Can vary the impact angle relative to the gravity vector (15° increments)
- 1m diameter well for targets
- View ports for external instrumentation
- Runs in vacuum (0.5 Torr)

Area my 2 shot rest music							
Shot #	Gun	ProjectileDiameter	Velocity (km/s)	Material			
1	PG	1/8" (3.175 mm)	2.33	Alumina			
2	PG	1/8" (3.175 mm)	2.37	Alumina			
3	PG	1/8" (3.175 mm)	2.3	Alumina			
4	PG	1/8" (3.175 mm)	2.31	Alumina			
5	PG	1/8" (3.175 mm)	2.31	Alumina			
6	PG	1/8" (3.175 mm)	2.37	Alumina			
7	PG	1/8" (3.175 mm)	2.31	Alumina			
8	PG	1/8" (3.175 mm)	2.32	Alumina			
9	PG	1/8" (3.175 mm)	2.32	Alumina			
10	PG	1/8" (3.175 mm)	2.27	Alumina			
11	PG	1/8" (3.175 mm)	2.33	Alumina			
12	PG	1/8" (3.175 mm)	2.3	Alumina			
13	PG	1/8" (3.175 mm)	2.3	Alumina			
14	PG	1/8" (3.175 mm)	6.27	Alumina			
15	LGG	1/8" (3.175 mm)	6.27	Alumina			
16	LGG	1/8" (3.175 mm)	6.3	Aluminum			
17	LGG	1/8" (3.175 mm)	4.64	Aluminum			
18	LGG	1/16" (1.5875 mm)	6.58	Alumina			
19	LGG	1/16" (1.5875 mm)	6.42	Aluminum			
20	LGG	1/16" (1.5875 mm)	6.49	Aluminum			
21	LGG	1/16" (1.5875 mm)	6.41	Aluminum			
22*	LGG	various	4.76	Sand			
23*	LGG	0.5 mm	4.72	Polyethylene			

*Shots 22 & 23 were cap carriers with multiple objects

AMES Vertical Gun Range (AVGR) Highlight

Parallel view data from AMES Round 2 testing. Good signal observed from both cameras

Shot 19 Details: **Light Gas Gun** 1/16" diameter (1.5875 mm) Aluminum @ 6.42 km/s 30W laser output @ 793 nm

Camera to projectile: 62.88 cm Along sheet: 52.2 cm Camera angle: -9.8°

Lightsheet Projecti

Ims

Dark

5000 (0.00 \$

Shot 01 Frame Sequence w/ Diff

U.S. NAVAL RESEARCH LABORATORY

AVGR Highlights

Shot 18:

Light gas gun

- 1/16" Alumina (Al₂O₃)
- 6.38 km/s
- 15W @ 793 nm

Ximea:

12mm lens, 40 ms exposure 2752 x 2202 pix

Semrock filter

Neuro: 5mm lens, no filter

Hydrogen gas enters the scene in the same frame as the projectile. This makes it difficult for auto-detection in this laboratory setting, especially for small fast projectiles.

Ximea Zoomed

In zoomed image from Ximea camera one can clearly identify the projectile, but shows the increased background.

U.S. Naval Research Laboratory

Distribution Statement A: Approved for public release. Distribution is unlimited.

Low gas background

Zoom of differenced Images from Ximea (100x100 px)

Material: Color Tables Alumina = Greyscale Aluminum = Blue Quartz/Boro = Green

Sizes: 1/4" 6.35 mm 3/16" 4.7625 mm 1/8" 3.175 mm

1/16"

Speeds:

1.5875 mm

Multiple Debris

Conclusion & Future Work

- Successful laboratory testing has been completed at near LEO orbital velocities
- TRL of LARADO prototype system has been raised to level 6 (NASA scale)
 - Detected single object as small as 1.5875 mm moving at 6.58 km/s
 - Group of 0.5mm objects @ 4.72 km/s
 - Size characterization was verified.
 - SNR is impacted by the random nature of captured frame and background gas in chamber
 - Neuromorphic camera shows promise for detection, need to work on bias settings.

Future Work

- 1. Continue development of sensor for STPSat-7
- 2. Modelling: Simulate 2-d image return for each view (|| and iso)
- 3. Test detection algorithms on simulated image sequences

U.S. Naval Research Laboratory

A cross-section of the polyethylene backstops taken after multiple shots.

U.S. Naval Research Laboratory

U.S. NAVAL RESEARCH LABORATORY

Backup Slides

Implementation on STPSat-7

<u>Challenge</u>: There is limited bandwidth on STPSat-7, Unable to downlink all desired LARADO data.

Solution: Change sensor configuration to add a parallel looking viewing (wrt lightsheet) sensor

- Parallel view can be cropped in one direction to ~10-20% of full frame to cover the lasersheet (w/ some buffer).
- This region of interest (ROI) will act as a trigger, when an event is detected in the parallel view the LARADO electronics will flag a # of ISO frames for download with the parallel frame
 - + Reduces amount of science data to send to ground
 - + Reduces complexity of on-orbit detection algorithms
 - + Allows running cameras at a faster cadence
 - + 2nd camera allows for discrimination of cosmic rays
 - + Avoids sun observation
 - Adds SWAP for additional camera
 - Requires time knowledge of the two cameras

Distribution Statement A: Approved for public release. Distribution is unlimited.

SET-SCI-297-11 | 17

Area Coverage

Lightsheet

U.S.NAVAL LRESEARCH LABORATORY

Area Coverage Analysis for STP-Sat7

Both Camera Views
1

Parallel Viewer						
Radius (cm)	Sep (m)	Range/Radius (cm)	Area (m ²)	∑ Area (m²)		
<25	0.1962	<25	0.0226	0.0226		
25	0.3174	25 - 50	0.0927	0.1153		
50	0.5667	50 - 75	0.1527	0.268		
75	0.8165	75 - 100	0.2127	0.4807		
100	1.0663	100 -125	0.2727	0.7534		
125	1.3163	125 - 150	0.2952	1.0486		
150	1.5018	>150	0.0317	1.0803		

Isometric Viewer						
Radius (cm)	Sep (m)	Range/Radius (cm)	Area (m ²)	∑ Area (m²)		
<25	0.4512	<25	0.0254	0.0254		
25	0.5114	25 - 50	0.0927	0.1181		
50	0.6791	50 - 75	0.1513	0.2694		
75	0.8865	75 - 100	0.1922	0.4616		
100	1.1116	100 -125	0.2278	0.6894		
125	1.3455	>125	0.1448	0.8342		
>125	1.4476					

• Signal from fast-moving FOD (no approximations)

AVGR 1 Counts as a Function of Range

 Mathematical model (details in paper) predicts the expected counts returned as a function of debris/camera geometry/laser output.

Inputs:

- STP Sat-7 Geometry & optics/camera
- 1.59 cm diameter debris
- 10 km/s velocity
- 30 W optical output
- Albedo of 1

Laboratory Test Setup

Distribution Statement A: Approved for public release. Distribution is unlimited.

SET-SCI-297-11 | 22